Propagating thoughts

Fairspectrum expands and opens an office in Turku

posted Dec 9, 2016, 5:37 AM by Heikki Kokkinen

Welcome to visit Fairspectrum Turku!

PharmaCity C-door, 2nd floor, Itäinen Pitkäkatu, 20520 Turku, Finland

Fairspectrum Wins Collaborative Spectrum Sharing Prize

posted Nov 6, 2016, 11:47 PM by Heikki Kokkinen   [ updated Nov 9, 2016, 10:42 AM ]

ROME, ItalyNovember 9, 2016 /PRNewswire/ --

FAIRSPECTRUM a leading provider of dynamic spectrum management services today announced that it has received the Collaborative Spectrum Sharing Prize. The award was presented to Dr. Oliver Holland, King's College of London by European Commission Digital Economy & Society Commissioner Günther H. Oettinger in the Second Global 5G Event in Rome on Nov 9, 2016. Dr. Oliver Holland, leader of the submission, received the prize on behalf of the DISTRIBUTE team, which consists of King's College London, Turku University of Applied Sciences, Queen Mary University of London, Fairspectrum, and the Joint Research Centre of the European Commission.

"We would like to express our deepest gratitude to Fairspectrum for its excellent contribution towards the submission. Fairspectrum has carried out pioneering work in realms of spectrum sharing", writes Dr. Oliver Holland, King's College London. Seppo Yrjölä, Nokia comments: "I was delighted that the Collaborative Spectrum Sharing award was received by Fairspectrum. Fairspectrum has been a long-term collaboration partner, and it has continuously demonstrated ground-breaking skills in spectrum sharing technology."

The deadline for European Commission Research & Innovation awarded prize of 500 000 € to improve the usage of scarce spectrum resources by providing Collaborative Spectrum Sharing, which means alternative and decentralized spectrum management approaches, closed on Dec 17, 2015.

Fairspectrum ( is a Finnish company, founded in 2010. Fairspectrum provides online spectrum management software, services, and related consulting. Fairspectrum was the first White Space Database (WSDB) provider qualified to operate in the United Kingdom and providing WSDB Services. Fairspectrum deploys LSA spectrum management service for the pilot of Radiocommunications Agency Netherlands to coordinate mutual interference of 2.3 GHz wireless camera users in 2016-2017. Fairspectrum piloted Licensed Shared Access (LSA) at Ministry of Economic Development of Italy in Romein 2015-2016, in Megafon network in Russia in 2016, and in Ylivieska, Finland in 2013-2016. This prize is a significant recognition for Fairspectrum spectrum sharing work. It allows Fairspectrum to invest in growth on international markets. The prize increases the awareness of dynamic spectrum management technology among European decision makers in wireless communications industry, and it strengthens the position of dynamic spectrum management in 5G networks.

Heikki Kokkinen
Mobile: +358 50 483 9510

Fairspectrum with Nokia, Megafon and NIIR in LSA pilot in Russia

posted Jul 7, 2016, 5:52 AM by Heikki Kokkinen   [ updated Jul 7, 2016, 5:55 AM ]

To facilitate the LSA cognitive radio study, Nokia, Fairspectrum and MegaFon jointly built a test cluster and in collaboration with NIIR studied the possibilities of online mobile network devices performance management against the electromagnetic environment parameters. NIIR will present the results of the trial to the SCRF. The trial’s insights provided MegaFon with valuable information on a completely new approach to the spectrum usage supporting 5G technology, while getting hands-on experience to create the development strategy for its network.

Fairspectrum Pilots LSA Service for Wireless Camera Users in the Netherlands

posted May 31, 2016, 4:43 AM by Heikki Kokkinen

Fairspectrum today began a Licensed Shared Access (LSA) service pilot for 2.3 GHz wireless camera users in the Netherlands.The Netherlands is the first country in Europe to pilot mutual interference management of wireless cameras with LSA. The Netherlands is also the first country to issue radio licenses for commercial end users with a requirement to use LSA spectrum management. Fairspectrum was selected by Agentschap Telecom to provide the LSA pilot spectrum management system in the Netherlands.

LSA system allows dynamic spectrum sharing without harmful interference. The spectrum users record their frequency, time of use and location in the system. When a new user would like to begin use of spectrum, the system computes which frequency bands are available in the given location. Piloted wireless cameras are used for Electronic News Gathering (ENG) and Outdoor Broadcasting (OB). The main operational target in the system is to have a reservation system, which helps to avoid interference between ENG/OB users. Another longer term target for the system is to prepare for mobile broadband use on 2.3 GHz band. ECC Decision (14)02 aims to allow the mobile broadband on the band.

Gerard Cuijten from Agentschap Telecom said that "This pilot helps us to get spectrum in more efficient and shared use." "The Netherlands LSA pilot is unique as it manages the mutual interference of the real wireless camera users," commented Heikki Kokkinen from Fairspectrum.

About Fairspectrum

Fairspectrum is a Finnish private company providing online spectrum management services, software and related consulting. Fairspectrum has solutions for TVWS, Licensed Shared Access (LSA), and Citizen's Broadband Radio Service (CBRS). Learn more on

Internet for rural women in Vietnam

posted Nov 27, 2014, 2:37 AM by Heikki Kokkinen

Fairspectrum carried out a technical study in the project: How Internet changes rural women's life. As a person from technology domain, I often think that bringing the access capabilities available on the is enough for a success in an access technology project. The stories in the exhibition tell that cultural issues, family relationships, and social acceptance have at least as high meaning as availability and service price in the adoption of a new technology. The project results were published in Vietnamese Women's Museum exhibition and workshop on Nov 26, 2014.

Press release: Fairspectrum Provides TV White Space Database for Europe’s First Geolocation Radio License

posted Aug 27, 2012, 12:05 AM by Heikki Kokkinen

HELSINKI, Finland. — Aug 27, 2012 – Fairspectrum Oy, a leader in the field of spectrum sharing technology, announced the deployment of Fairspectrum geolocation database in the communication system, which implements the Europe’s first TV White Space geolocation database radio license.

Finnish Communications Regulatory Authority (Ficora) has today issued a test radio license for cognitive radio devices on the TV White Space frequencies for Turku University of Applied Sciences. The license covers the 470-790 MHz frequency range and a 40 km x 40 km area surrounding Turku, Finland. The license is valid for one year. Nearly 300 000 people live in the radio license area. A geolocation database is an essential part of the license. The license is the first one in Europe having the geolocation database control of frequencies.  

Spectrum sharing is a global solution for matching the increasing demand for wireless data communication and scarce frequency resources. TV White Space frequencies are a real world test laboratory of spectrum sharing. TV White Space can improve existing data communication services by increasing data rates or coverage area, it can make the services more cost efficient, and new services can be developed. Spectrum sharing in TV White Space is managed with a geolocation database. The geolocation database controls TV White Space device frequencies and transmission power so that the devices do not interfere other wireless communication systems like terrestrial TV or radio microphones.

Fairspectrum provides the geolocation database for the communication system according to the Ficora licence rules. Fairspectrum geolocation database applies geometrical computation in radio spectrum sharing. Geometrical computation makes Fairspectrum geolocation database efficient, fast, and easily customizable for various environments, regulations, and rules. The geometrical computation based rules can clearly be communicated between operators, regulators, and other users of the shared spectrum.

The issued license will be used in the WISE project. The WISE consortium consists of Nokia, Digita, Fairspectrum, Ficora, Turku University of Applied Sciences, University of Turku, and Aalto University.

WISE White space test environment for broadcast frequencies (WISE) is a Tekes funded research project in Finland, and it is a part of the Tekes Trial program. WISE studies efficient use of TV-band spectrum resources through cognitive radio technologies and geolocation databases. Tekes Trial program invites international experts and investments to benefit from its unique trial environment for cognitive radio and networks. For more information, visit and

Fairspectum is a Finnish startup applying Internet services and computational geometry in the field of radio spectrum sharing. For more information, visit

Ficora is Finnish Communications Regulatory Authority. For more information, visit

TUAS is Turku University of Applied Sciences. It offers education that develops working life and entrepreneurship, research and development services (R&D) and holistic development of organisations. For more information, visit

Fairspectrum Oy
Heikki Kokkinen
Managing director
Energiakuja 3, 00180 Helsinki, Finland
+358 50 483 9510


LTE and TV White Space

posted Jun 4, 2012, 12:49 AM by Heikki Kokkinen

European industry has traditionally been very strong in mobile communication technologies, which currently best represented by the LTE mega-trend. It is interesting to think how LTE and TV White Space paths could cross. 700 MHz band is TV White Space in Europe and a LTE band in US. The US basestations and terminals can directly be used as White Space devices in Europe. A few improvements like flexible multiplex gap, availability of TDD devices, and understanding geolocation database communication would increase the applicability. TV White Space could form a part of LTE transmission. Most likely it could be used to connect femto or pico basestations to the core network on rural areas. TV White Space could become 3GPP radio interface technology at least in three different ways. Defining it as non-3GPP access like WiFi is already there. TV White Space frequencies could provide frequencies for carrier aggregation, or TV White Space frequencies would be added to the list of supported band with the specific features required by the shared spectrum use. It may be difficult to believe that the operators would begin invest in a radio network without any guarantees about availability of the spectrum. That coiuld be provided with the help of Authorised Shared Access aka. Licensed Shared Access (ASA/LSA). The problem can be turned around and consider how LTE technology could become a part of a White Space system. Which of the LTE components could be applied as such or with small modifications in a TV White Space communiation system: radio interface, Radio Resource Management (RRM), or Core Network (VN). Another radical thought would be to interpret the WRC outcome about use of 700 MHz band "broadcast and mobile systems as co-primaries" in a way that the co-primary definition would not be between continents or countries like typically, but between smaller areas like between GE06 allotments. This way the 700 MHz LTE systems could be deployed as White Space networks without clearing the 700 MHz from from broadcast. Why should we consider combining LTE and TV White Space? If we believe that we can combine the benefits of both worlds in the same system, it definitely becomes worth while as the benefits of these technologies are currently quite different. LTE has a huge eco-system. It attracts investments as large as GDB of a medium sized country, the radio technology represents state of the art and at the same time is thoroughly understood, studied and tested. Overall LTE deployment and business is very predictable. TV White Space has a huge growth potential, it is open for many innovations, and principles and processes can be applied to other frequency bands and frequency sharing with other types of systems.

Further information about LTE and TV White Space can be found in the Fairspectrum presentation in Tekes trial seminar on May 4, 2012.

Tools to support TV White Space Geolocation database

posted May 20, 2012, 11:09 PM by Heikki Kokkinen   [ updated May 20, 2012, 11:13 PM ]

A White Space geolocation database is a tool to bring the regulatory spectrum sharing principles in practice. It administers the frequency use of the same TV band between TV broadcasting, Program Making and Special Events (PMSE) equipment like wireless microphones, and TV White Space Devices. 

Workshop on Cognitive radio and software defined radio, organized by ECC CEPT and a research project Cost-Terra in Mainz, Germany on May 2-3, 2012, presented a wide view of regulators, researchers, and industry on the topic. Spectrum Sharing is an umbrella term including cognitive radio and TV White Space in the European regulatory terminology. The basic categories of spectrum sharing are cognitive technologies and location based technologies, which are best represented by spectrum sensing and geolocation database technologies, respectively. Interestingly, the majority of workshop discussion was around location based TV White Space technologies.

TV White Space geolocation database facilitates the spectrum sharing collaboration between regulators, broadcasters, PMSE, and TV White Space industry. Although the geolocation database has been introduced by the TV White Space industry, the collaboration assumes that also broadcasters and wireless microphones participate in contributing information to the database and benefit by doing so. In the Mainz workshop, Fairspectrum demonstrated four concepts how to bring these industries together. Through the geolocation database field strength input interface, the broadcasters can contribute their service areas calculated by themselves to the geolocation database. With the PMSE Manager, the wireless microphone users can maintain the geolocation information about their device frequencies, location and operation time. The regulators can effectively communicate the PMSE regulations to the wireless microphone users with the Frequencies for PMSE; and with the White Space Device, the regulators and TV White Space industry can test, demonstrate, and visualize the operation of a geolocation database.

Cambridge TV White Spaces Trial Summit

posted Apr 29, 2012, 12:47 AM by Heikki Kokkinen   [ updated Apr 29, 2012, 12:47 AM ]

Cambridge Wireless hosted an excellent TV White Spaces workshop in Duxford, UK on Apr 25, 2012. There were three recognizable themes in the event: to wrap up the learning of the best known White Space trials in Europe, to summarize the current state of the art of White Space around the world, and to collect the fighting spirit for the commercial breakthrough of the TV White Spaces technology. 
The World Radiocommunications Conference (WRC) 2012 discussed an accelerated schedule for allocation of 700 MHz band for mobile data communications in January and February 2012. It was a wake-up call for the European industries utilizing the TV UHF band: terrestrial TV broadcasting, Program Making and Special Events (PMSE) including radio microphones, and TV White Spaces. Pearse O’Donohue, Head of Radio Spectrum Policy in European Commission reminded that European Commission has not yet expressed its statement on the use of 700 MHz band, and he recommended that the current users of the 700 MHz band would join the forces to protect their interests. Following the same topic, Richard Thanki from University of Southampton emphasized that a slight increment on mobile spectrum of possible new 700 MHz band has a much smaller impact on people's lives than enabling a plethora of new services with TV White Space. These services were presented in a great overview of TV White Space potential applications by prof. William Webb from Neul. 
In addition to the fantastic presentations, Cambridge TV White Spaces Trial Summit had a number of demonstrations. Without going to the details of the demonstrations, I still can feel the words of Kari Heiska, Digita: "Not so many years ago, LTE had same size of demonstration room, same number of stands, and same size of devices in the Mobile World Congress." 
It is a privilege to belong to this group of people who have a clear mission to increase the efficiency of radio spectrum use, improve the communication services of the people in the world, and make those services more and more affordable by increasing competition.

The presentations of the event are available here.

TV White Spaces in Europe

posted Dec 21, 2011, 12:09 AM by Heikki Kokkinen

The media visibility of TV White Spaces development in Europe is currently dominated by UK and specifically the Cambridge area. Last week, the Cambridge trials were demonstrated to the European regulators of CEPT SE43 working group. In the same event, Andrew Gowans presented the Ofcom views of TV White Space regulation and standardization. He divided the standardization need of technical issues in four different catogories with examples: 
- Needs European harmonization in ETSI or CENELEC: White Space Devices (WSD) spectrum emission mask and conformance tests,
- Needs technical standardization in IEEE, 3GPP, Weightless SIG, or IETF: WSD radio interface, 
- Decided by the local regulator: Accrediation of the database provider, and
- Manufacturer differentiation: Technical algorithm, which specifies the available TV channels and maximum transmission power,

The transfer from analog to digital broadcasting enables the TV White Space communication opportunity. Netherlands, Finland, and Sweden are forerunners in the analog switch off (ASO). UK has an interesting situation as it started the digital TV transmissions first in Europe, but the completion of ASO is still ongoing. A case study of TV White Spaces capacity in Finland confirms the fact that in the urban and highly populated areas there is less capacity available than on rural areas. A forecast of TV White Spaces diffusion is computed based on Bass diffusion model, the s-curve which has a slow start, an exponential growth phase and a saturation point. Nordic countries - and UK as an White Spaces exception - are expected to become early adopters. When the industry revenue per country is taken into account in the estimates, the large economies: Germany, UK, France, and Italy begin to dominate soon.

Fairspectrum representatives discuss TV White Spaces in the today published book TV White Space Spectrum Technologies: Regulations, Standards, and Applications.

1-10 of 14